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Abstract. We study time-inhomogeneous stochastic dynamical systems with vanishing noise.
Conditions implying strong ergodicity are proposed; the asymptotic probability distribution is
characterized and we estimate the speed of relaxation. Applying these results to simulated annealing
enables us to introduce systems that converge faster than a classical annealing dynamics determined
by a Gibbs factor.

1. Introduction

There is a long tradition of applying and studying the technique of simulated annealing. This
well known method allows to locate the absolute minima of a complicated energy landscape.
The main idea is to run a time-inhomogeneous dynamics for which on every (discrete) time step
n the Gibbs probability distributionµβn, with respect to the considered energy function and at
temperatureβn, is invariant for the applied transition. The hope is that whenβn, n = 1, 2, . . .,
gradually increases this dynamics approaches the probability distributionµ∞ = limβ↑∞ µβ .
This distribution assigns equal weights to all the states where the energy is minimal.

To limit the computation time, one is inclined to increase the inverse temperatureβn as
fast as possible. However, when the system is cooled too quickly, it is possible for it to become
stuck in a local minimum and, as a consequence, for it never to reach the desired probability
distribution. So, a central question is to find the optimum cooling schedule. A first rigorous
result was given by Geman and Geman [3]. They showed that, for a system in which the
energy of a configurationσ of N different variables isU(σ), the simulated annealing process
is successful as soon as

βn 6
1

N [maxσ U(σ)−minσ U(σ)]
logn

for large timesn. Afterwards, this result was confirmed for similar dynamical systems by
Gidas [4], Holley and Stroock [6], Holleyet al [5], and Deuschel and Mazza in [2] and
references therein. Moreover, in several of these papers the result was completed by the
calculation of an upper bound for the rate at which the dynamics reaches its asymptotic
distribution.
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Recently, some new computer simulations have pushed this discussion in a new direction.
Penna and Tsallis [8] and Stariolo [9] proposed new algorithms in which the transition
probabilities do still depend on the ‘temperature’ and the energy, but in a different form
than in the standard Gibbs factor. Nevertheless, the simulations suggest that the asymptotic
probability distribution is the same and, in addition, it seems that these new systems relax
faster than the classical simulated annealing procedures.

In this paper, we first extend the ideas of simulated annealing to a more general class of
stochastic dynamics. The energy function will no longer play a central role and the notion of
temperature is replaced by a more general notion of noise. More precisely, we consider serial
update, discrete time Markov processes in which the noise level is asymptotically extinguished.
We introduce conditions on the rate at which this happens, ensuring that the dynamics remain
ergodic. The same result allows us to characterize the asymptotic probability distribution and
to estimate the speed of convergence. Finally, we propose a criterion that is useful in comparing
the asymptotic behaviour of different dynamical systems. All these results are formulated in
section 2 of the paper.

In section 3 we apply the theorems to simulated annealing. We not only recover, in a
very simple way, some known results, but also propose new dynamical rules that allow a more
efficient location of the absolute minima in the energy landscape.

Next, in section 4, we propose a very useful coupling between two dynamics. This coupling
plays a key role in several of the proofs collected in section 5. Finally, in the appendix, one
can find the necessary, but rather trivial calculations supporting some statements made in the
main text.

2. Definitions and main results

We considerN variablesσ(i), i = 1, . . . , N . For everyi, the variableσ(i) takes values in
the finite set�0 = {1, 2, . . . ,M},M ∈ N. This gives rise to a configuration space� = �N0 ,
which is theN -fold Cartesian product of the set�0. For every configurationσ ∈ �, we call
σ(i) the state of theith variable. The set of real-valued functions on� is denoted byB(�)
andP(�) is the set of all possible probability distributions on�.

Forµ ∈ P(�) andf ∈ B(�), we denote byµ(f ) the expected value off with respect
to µ. ‖f ‖ = maxη∈� |f (η)| is the (supremum) norm off and the oscillation ati is defined
by1if = maxη∈� maxζ∈�0 |f (ηi,ζ )− f (η)|. Herein is the configurationηi,ζ , η ∈ �, ζ ∈ �0

such that

ηi,ζ (j) =
{
η(j) if j 6= i
ζ if j = i.

Finally, the semi-norm|||f ||| =
N∑
i=1
1if is called the total oscillation.

We introduce a discrete time, serial update stochastic dynamicsσn, n = 1, 2, . . ., on�.
σn is the configuration at timen. To construct this dynamics we start from a sequence of
probability kernelsPβn(·|·), βn > 0, n = 1, 2, . . ., from�×� to [0, 1], which assign to every
η ∈ � the probability distributionsPβn(·|η) ∈ P(�). The transition probabilityPβn(σ |η)
gives the probability to obtain the configurationσ at timen, when the previous configuration
wasη. The parametersβn, n = 1, 2, . . ., are supposed to determine the amount of noise in the
system. The higherβn, the lower the noise level. This will be clear from the examples. We
imagine that theβn are taken from a non-decreasing positive functionβt , t > 0.

In the serial update dynamics studied in this paper, the variablesσ(i), i = 1, 2, . . . , N , are
modified one by one, in a random order. This means that on every time step, first an indexi is
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selected from the set{1, 2, . . . , N}with probability 1/N and then the configuration is updated
from σn−1 = η to σn = σ according to some individual probability lawp(i)βn (σ |η). This law is
such that the probabilityp(i)βn (σ |η) differs only from 0 whenσ = ηi,ξ for someξ ∈ �0. The
full transition probability can then be written as

Pβn(σ |η) =
1

N

N∑
i=1

p
(i)
βn
(σ |η). (1)

Starting from (1), we define for positive integersn0, n, withn0 6 n, the transition operators
Pβn andPn0,n acting onf ∈ B(�), as follows:

Pn,nf (η) = f (η)
P n−1,nf (η) = Pβnf (η) ≡

∑
σ∈�

f (σ)Pβn(σ |η) (2)

and by iteration

Pn0,nf (η) = Pβn0+1[P
n0+1,nf ](η) ≡

∑
σ∈�

[Pn0+1,nf (σ )]Pβn0+1(σ |η).

So,Pn0,nf (η) is the expected value of the functionf at timen, when the configuration at time
n0 wasη. When the noise depends on the time in a non-trivial way, the dynamics becomes
time-inhomogeneous. Otherwise we have a time-homogeneous evolution. The latter case, this
is whenβn = β for a fixed numberβ on every timen, will be emphasized by adding an extra
indexβ to the transition operators, i.e. we writePn0,n

β instead ofPn0,n.
It is well known that as soon as the noise is non-zero, in our examples this will correspond

toβ <∞, very mild conditions (e.g., that the dynamics is an irreducible and aperiodic Markov
chain) imply that there exists a unique invariant probability distributionµβ such that for every
n0 6 n

µβ(P
n0,n
β f ) = µβ(f ) (3)

and

‖Pn0,n
β f − µβ(f )‖ 6 Ce−λ(n−n0) (4)

for some constantsλ > 0 andC = C(λ, f ) <∞. For this reason, we feel free to assume as a
hypothesis the existence of such a probability distribution for the time-homogeneous versions
of the dynamics studied in this paper.

In this paper we focus on the non-homogeneous case. Since for this kind of dynamics,
in general, there does not exist any longer a probability distribution that remains unaffected
at every time step, it becomes more complicated to predict the asymptotic behaviour of these
systems. One can ask whether an expression similar to (4) still holds, knowing that equation
(3) cannot be satisfied. To address this problem, we introduce the following two notions.

Definition 1. A dynamics is called weakly ergodic if for every functionf ∈ B(�) and every
initial time n0

lim
n↑∞

sup
η,η′
|Pn0,nf (η)− Pn0,nf (η′)| = 0.

Weak ergodicity implies that the asymptotic behaviour of the dynamics becomes
independent of its initial configuration. This statement does not say anything more about
this behaviour. It is for instance not necessary that the dynamics converges and if it does, it is
not clear what the limit will be. The following definition allows for these shortcomings.

Denote byµβ the unique probability distribution that satisfiesµβ(Pβf ) = µβ(f ) and
suppose that limn↑∞ µβn exists for some sequenceβn, n = 1, 2, . . . .
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Definition 2. A dynamics is called strongly ergodic if for every functionf ∈ B(�) and every
initial time n0

lim
n↑∞
‖Pn0,nf − µ∞(f )‖ = 0

with

µ∞(f ) = lim
n↑∞

µβn(f ).

To state our results in this context, we rely on the following parameters:

qβn = max
k

max
η,η′

var(p(k)βn (η
k,·|η), p(k)βn (η′

k,·|η′)). (5)

Here var denotes the variational distance between probability distributions: for two
distributionsµ1 andµ2 on�0 (or on�), this distance is defined as

var(µ1, µ2) = 1

2

∑
σ

|µ1(σ )− µ2(σ )| 6 1.

The sum is over�0 (or over�).
When theqβn approach 1, the dynamics becomes strongly dependent on the past, which

corresponds to the low noise (highβ) regime. The first result says that, in order to have weak
ergodicity, limn↑∞ qβn = 1 is allowed as long as the convergence to 1 is slow enough.

Theorem 1. When

lim
n↑∞

nα(1− qβn) = ∞ (6)

for some0< α < 1/N , then the dynamics is weakly ergodic. Moreover, there exist constants
C = C(N, α, {qβn}n∈N) <∞ andλ = λ(N, α) > 0 such that for everyf ∈ B(�)

sup
η,η′
|Pn0,nf (η)− Pn0,nf (η′)| 6 C|||f ||| exp(−λ(n1−Nα − n0

1−Nα)) (7)

for everyn0 6 n.

Under the extra condition that the transition probabilities are smooth enough functions of
the time for largen, we also can prove strong ergodicity.

Suppose that0(t) = maxη,n
∑

σ

∣∣ d
dt p

(n)
βt
(σ |η)∣∣ exists, then the following result holds.

Theorem 2. When

lim
n↑∞

nα(1− qβn) = ∞ (8)

and

lim
t↑∞

t δ0(t) = 0 (9)

for some0< α < 1/N andδ > 2αN , then the dynamics is strongly ergodic. Moreover, there
exist a constant0< γ < δ−2αN and a constantC = C(N,M, α, δ, γ, {qβn}n∈N) <∞ such
that

‖P 0,nf − µ∞(f )‖ 6 |µ∞(f )− µn(f )| +C|||f |||n−γ (10)

for everyf ∈ B(�).
In a final result the asymptotic probability distributions of different strongly ergodic

dynamics are compared. More precisely, we propose conditions that allow to define a set
of dynamical systems that are all strongly ergodic and that all have the same asymptotic
probability distribution as a given reference dynamics.
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Theorem 3. Suppose that the dynamics with transition operators(P n0,n)n0,n satisfies the
conditions (8) and (9). When another dynamics(P̃ n0,n)n0,n satisfies

lim
n↑∞

nδ max
η,k

var(p(k)βn (η
k,·|η), p̃(k)

β̃n
(ηk,·|η)) = 0 (11)

for someδ > αN , then this dynamics also is strongly ergodic and has the same asymptotic
probability distribution, i.e.

µ̃∞(f ) = µ∞(f )
for everyf ∈ B(�).
Remark 1. Under the general condition (6), theorem 1 is optimal. To see this, we consider
for instance the following very simple system on� = �0 = {−1,+1}:

Pβn(σ |η) =
{

1− 1
2e−βn if σ = η

1
2e−βn if σ 6= η.

Whenβn = (1 + δ) log(1 +n) for someδ > −1, then

qβn = 1− e−βn = 1− 1

(1 +n)1+δ .

So, condition (6) is only satisfied whenδ < 0. In the other case, i.e. whenδ > 0, the
inequality (7) is violated. Indeed, letI+(σ ) be the function that gives 1 whenσ = +1 and 0
whenσ = −1, then the following identity holds:

|P 0,nI+(+1)− P 0,nI+(−1)|
= ∣∣(1− 1

2e−β1)P 1,nI+(+1) + 1
2e−β1P 1,nI+(−1)

− 1
2e−β1P 1,nI+(+1)− (1− 1

2e−β1)P 1,nI+(−1)
∣∣

= (1− e−β1)
∣∣P 1,nI+(+1)− P 1,nI+(−1)

∣∣
=

n∏
i=1

(1− e−βi )

=
n∏
i=1

(
1− 1

(i + 1)1+δ

)
. (12)

Whenδ = 0 this implies that

|P 0,nI+(+1)− P 0,nI+(−1)| = (n + 1)−1.

Whenδ > 0, the right-hand side of (12) is strictly positive uniformly inn and the dynamics is
no longer weakly ergodic.

Remark 2. One of the advantages of theorem 2 is that it does not require knowledge of
the invariant probability distributionsµβn, n = 1, 2, . . . . This is in contrast to some other
arguments proving strong ergodicity. For instance, in [3] the following condition appears:

∞∑
n=1

var(µβn, µβn+1) <∞. (13)

Remark 3. It is also interesting to notice that condition (9) becomes weaker as soon as the
parameterα in (8) is smaller, which implies that the convergence in (7) is faster. It is not so
hard to extend our argument to see that if for everyn, qβn < ε for someε < 1, then an upper
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bound (7) holds which decreases exponentially fast whenn − n0 grows. In that case, it is
sufficient that0(t) converges to 0 in order to get a strongly ergodic system.

Example 1. Let�0 = {−1,+1}. Assign to everyi = 1, 2, . . . , N two disjoint subsetsAi and
Bi of {1, 2, . . . , N}. However, sets with different indicesi can overlap. Define

p
(i)
βn
(ηi,+1|η) =


1− 1

2e−βn if sgn

[∑
j∈Ai

η(j)−
∑
j∈Bi

η(j)

]
> 0

1
2e−βn otherwise.

In this model

qβn = 1− e−βn

which means that, givenα < 1/N , condition (6) is satisfied as soon as, for anyα′ < α

andn large enough,βn 6 (α′/N) logn. Moreover, whenβt = ε log t for someε > 0, then
maxσ,η,n | d

dt p
(n)
βt
(σ |η)| = 1

2εt
−(1+ε). Hence, condition (9) is satisfied for everyδ < 1, uniformly

in ε > 0. So, takingα = 1
4N , we see that the dynamics is strongly ergodic forβn = 1

5N logn
and the second term in the right-hand side of (10) decays with a rate 0< γ < 1/2.

3. Simulated annealing

In this section, we apply the above results to simulated annealing. We assume that the energy
function to be minimized is a non-negative functionU ∈ B(�) such that minσ U(σ) = 0 and
maxσ U(σ) = Umax, for some finiteUmax<∞. We define�(U) to be the set of minima

�(U) = {σ ∈ � : U(σ) = 0}
and for a given configurationσ , we defineδσ as the probability distribution with the following
prescription:

δσ (η) =
{

1 if η = σ
0 otherwise.

Finally, µmin is the probability distribution that assigns equal weights to all the elements of
�(U), i.e. forf ∈ B(�)

µmin(f ) = 1

|�(U)|
∑

σ∈�(U)
δσ (f ) = 1

|�(U)|
∑

σ∈�(U)
f (σ ). (14)

We propose several possible dynamical rules that are all indexed by the energy functionU

and a time-dependent noise parameter (temperature)βn. We look to see under which conditions
onβn these dynamics are strongly ergodic, we wonder which of them haveµmin as asymptotic
probability distribution and we investigate the relaxation behaviour.

Example 2. The first example is the analogue of the so called heat bath algorithm and is
determined by the Boltzmann–Gibbs distribution, i.e.

p
(k)
βn
(ηk,ζ |η) = 1

Zβn(η)
exp(−βn[U(ηk,ζ )− U(η)]) (15)

with η ∈ �, ζ ∈ �0 andZβn(η) the normalization constant. The only probability distribution
that solves the equationµβn(Pβnf ) = µβn(f ) for everyf ∈ B(�), is given by the Boltzmann–
Gibbs distribution:

µβn(σ ) =
1

Zβn
exp(−βnU(σ)). (16)
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HereZβn =
∑

σ exp(−βnU(σ)) is the normalizing partition sum.
The corresponding densityqβn (see equation (5)) can be estimated as follows:

qβn = max
k,η,η′

var(p(k)βn (η
k,·|η), p(k)βn (η′

k,·|η′))

6 max
k,η,η′

∑
ζ 6=ζ ′

p
(k)
βn
(ηk,ζ |η)p(k)βn (η′

k,ζ ′ |η′)

6 1− min
k,η,η′

∑
ζ

p
(k)
βn
(ηk,ζ |η)p(k)βn (η′

k,ζ |η′)

6 1−min
k,η,ζ

p
(k)
βn
(ηk,ζ |η)

6 1− 1

|�0|e
−βnUmax. (17)

Hence, given 0< α < 1/N , condition (8) is satisfied when, for someα′ < α,

βn 6
α′

Umax
logn (18)

as soon asn is large enough.
Moreover, we show in lemma A1 that whenβn = ε logn, for someε > 0, condition (9)

is verified for any 0< δ < 1, independently ofε. So, for 0< 2αN < δ < 1 andβn equal to
the right-hand side of (18), theorem 2 applies. This means that for any 0< γ < 1− 2αN ,
there exist constantsCi = Ci(N,M, α, δ, γ, {qβn}n∈N) <∞, i = 1, 2 such that

‖P 0,nf − µ∞(f )‖ 6 |µ∞(f )− µβn(f )| +C1|||f |||n−γ

6 C2‖f ‖(n−α′Umin/2Umax + n−γ ) (19)

for Umin = min{U(σ) : σ /∈ �(U)}, α′ < α andn large enough. Finally, we also notice that
µ∞ is indeed equal toµmin. This follows immediately from (16).

Both equations (18) and (19) confirm earlier results that can be found in [2–6].
For the practical use of simulated annealing it is important to find an algorithm that limits

the computation time. For this reason it is interesting to develop a dynamical rule that converges
as quick as possible toµmin. In the previous example this corresponds to increasingβn as fast
as possible. However, whenβn grows too rapidly, the dynamics may no longer be ergodic.
Another strategy is to construct a completely different dynamical rule for which the Gibbsian
probability distributions may no longer be invariant for the individual steps of the dynamics.

Example 3. A first such alternative example is

p
(k)
βn
(ηk,ζ |η) = 1

Zβn(η)
(1 +βnU(η

k,ζ ))−2 (20)

whereη ∈ �, ζ ∈ �0 andZβn(η) is the normalization constant. Recall that for every
configurationσ , U(σ) > 0, so that (20) is well defined. The corresponding invariant
probability distributionsµβn, n = 1, 2, . . ., assign the following weight to a configurationσ :

µβn(σ ) =
(1 +βnU(σ))−2∑

σ∈�
(1 +βnU(σ))−2

.

Using the fact that minσ U(σ) = 0, we also find thatµ∞ = µmin in this case.
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Analogous to (17), we see that

qβn 6 1− 1

|�0| (1 +βnUmax)
−2

which means that condition (8) is satisfied when, for someα′ < α,

βn 6
1

2Umax|�0|1/2n
α′/2 (21)

as soon asn is large enough.
Furthermore, in lemma A2 it is shown that whenβn = Bnε/2 for someε > 0 and

B > 0, condition (9) is verified for any 0< δ < 1, uniformly in ε and B. Hence,
when 0 < 2αN < δ < 1 and whenβn is equal to the right-hand side of (21), we can
conclude from theorem 2 that for any 0< γ < 1 − 2αN there exist finite constants
Ci = Ci(N,M, α, δ, γ, {qβn}n∈N), i = 1, 2 such that

‖P 0,nf − µ∞(f )‖ 6 |µ∞(f )− µβn(f )| +C1|||f |||n−γ

6 C2‖f ‖
(
U2

max

U2
min

n−α
′
+ n−γ

)
(22)

for Umin = min{U(σ) : σ /∈ �(U)}, α′ < α andn large enough.

The observation that (22) decreases faster than (19) confirms [7–9]. In these papers
algorithms for simulated annealing different from the Metropolis algorithm, but similar to
(20) are investigated using computer simulations. Also there a faster relaxation is found. Of
course, since (19) and (22) are only upper bounds, we cannot conclude here that the dynamics
determined by (20) indeed converges quicker. This leads us to our last result: theorem 4 allows
to show that the dynamics (15) is at least not faster than the one with transition probabilities (20).

We first notice that for every potentialU , we can always chooseβn, n = 1, 2, . . ., such
that the probabilities (20) verify condition (8) for, for instance,α = 1/3N . Hence, setting
α′ = 1/4N andγ = 1

4 in the upper bound (22), we observe that it is possible to decrease the
noise so that the dynamics determined by (20) relaxes faster than the functionn−1/4N when
time increases.

So, in order to prove that the dynamics (15) is in general not faster, it is sufficient to find
one energy functionU for which the corresponding simulated annealing procedure relaxes
slower thann−1/4N , and this for all possible cooling schedulesβn, n = 1, 2, . . . .

Therefore, we take�0 = {−1,+1} and we consider the following potential:

U(σ) =


0 if σ(i) = +1, i = 1, 2, . . . , N

Umin if σ(i) = −1, i = 1, 2, . . . , N

Umax otherwise.

(23)

We show that for this potential and for the indicator functionI−1(σ ), which is 1 when
σ(i) = −1, i = 1, . . . , N and 0 for all the other configurations, the following theorem is true.

Theorem 4. Suppose that the potential (23) satisfies

(2δ−1 + 1)Umin < Umax (24)

for someδ > 0. Then, there existsβc = βc(Umin, Umax, N) > 0 such that for every increasing
and diverging sequenceβn, n = 1, 2, . . ., for which the dynamics determined by (15) is strongly
ergodic and that satisfiesβ1 > βc,

|µβ1(P
0,nI−1)− µ∞(I−1)| = µβ1(P

0,nI−1) > n−δ (25)

as soon asn is large enough.
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Using this theorem forδ < 1
4N , it is straightforward to conclude that, for all possible

choicesβn, n = 1, 2, . . ., the transition probabilities (15) determine, in general, not the most
efficient dynamics for simulated annealing. Indeed, we found an upper bound on the rate of
convergence that, by choosing the appropriate sequenceβn, n = 1, 2, . . ., can be satisfied for
every possible energy function when the transition probabilities (20) are applied. However,
there exist potentials so that for all cooling schedules the dynamics (15) is still slower than this
bound.

By the next example we illustrate that the transition rule proposed in (20) is only one
possible choice out of a large class of dynamics.

Example 4. Take any positive, differentiable functionF on R+ such thatF(0) = 1,
lim
x↑∞

F(x) = 0 and that is strictly decreasing. Then, we can define the transition probabilities

p
(k)
βn
(ηk,ζ |η) = 1

Zβn(η)
F (βnU(η

k,ζ )) (26)

with again the same meaning forZβn(η). The corresponding invariant probability distributions
are

µβn(σ ) =
F(βnU(σ))∑
σ

F (βnU(σ))
n = 1, 2, . . .

and

qβn 6 1− 1

|�0|F(βnUmax).

This implies that (8) is satisfied when, for someα′ < α,

βn 6
1

Umax
F−1

( |�0|
nα
′

)
(27)

as soon asn is large enough.
Hence, when we can find out for whatβn, n = 1, 2, . . ., satisfying (27), there exists a

δ > 2αN so that condition (9) also holds, we obtain a whole set of strongly ergodic dynamical
systems for whichµ∞ = µmin. Moreover, for any 0< γ < δ − 2αN there exist finite
constantsCi = Ci(N,M, α, δ, γ, {qβn}n∈N, F ), i = 1, 2 such that

‖P 0,nf − µ∞(f )‖ 6 |µ∞(f )− µβn(f )| +C1|||f |||n−γ

6 C2‖f ‖
(
F

(
Umin

Umax
F−1

( |�0|
nα
′

))
+ n−γ

)
for Umin = min{U(σ) : σ /∈ �(U)}, α < α′ andn large enough.

In lemma A2 it is shown that, for instance, for the functionsF(x) = (1+x)−λ, λ > 0, and
F(x) = (1 + log(1 +x))−1 there exists a sequenceβn, n = 1, 2, . . ., that verifies the condition
(8) and the condition (9) for 0< δ < 1. None of these functions, however, yields an upper
bound for the decay that is considerably faster than (22).

A disadvantage of the previous rules is that they only are well-defined and of interest for
positive energy functions whose minimal value equals 0. The latter is necessary to obtain the
wished asymptotic probability distributionµmin. In contrast to example 1, where the dynamical
rule is determined by the Gibbs factor exp(−βU(σ)), this represents no longer the general
case in which minσ U(σ) 6= 0. For practical applications of simulated annealing, however,
we do not explicitly know the full energy function, and we do not knowa priori whether
minσ U(σ) = 0 is true or not. For that reason it is interesting to modify the above transition
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probabilities to a more general form in which minσ U(σ) = 0 is no longer crucial. In [7–9]
the authors introduce systems similar to the following proposal.

Example 5. For anyλ > 0, take

p
(k)
βn
(ηk,ζ |η) =


1

Zβn(η)

(
1+βn[U(η

k,ζ )−U(η)])−λ whenβn[U(ηk,ζ )−U(η)] > −1

2

2λ

Zβn(η)
otherwise

(28)

whereη ∈ �, ζ ∈ �0 andZβn(η) is the normalization constant.
In this case we see that

qβn 6 1− 1

2λ|�0| (1 +βnUmax)
−λ.

This system can be analysed in a manner similar to that used in the previous examples, but
we are not able to verify that the asymptotic probability distribution equalsµmin. This leads
us to theorem 3, which enables us to findµ∞ by comparing the dynamics with a reference
dynamics for which we do know the asymptotic distribution.

Example 6. Let g(n) = e3NUmaxβ̃n ; then we can apply theorem 3 to the following transition
probabilities:

p̃
(k)

β̃n
(ηk,ξ |η) =



1

Zβ̃n(η)

(
1 +g(n)−1[β̃n(U(η

k,ξ )− U(η)])−g(n)
wheng(n)−1β̃n(U(η

k,ξ )− U(η)) > −1

2
2g(n)

Zβ̃n(η)
otherwise.

(29)

In lemma A3 we use the dynamics of example 2, withβn = (α/2Umax) logn, as a reference
to show that wheñβn = βn this dynamics asymptotically approachesµmin.

4. A coupling argument

A useful way to compare two dynamical systems is connecting the systems via a coupling. This
means that, given the dynamics(σn)n=1,2,... and(σ ′n)n=1,2,... on�, with transition operators
(P n0,n)n0,n and(P̃ n0,n)n0,n respectively, we consider a new evolution(σn, σ ′n)n=1,2,... on�×�,
with transition operators(Probn0,n)n0,n such that∑
σ

Probn0,n[σ, σ ′|η, η′] = P̃ n0,n(σ ′|η′) and
∑
σ ′

Probn0,n[σ, σ ′|η, η′] = Pn0,n(σ |η).

The coupling that we have in mind is constructed using individual transition probabilities
p
(k)

β,β̃
(σ, σ ′|η, η′), k = 1, 2, . . . , N , such that, for eachk, the probabilityp(k)

β,β̃
(σ, σ ′|η, η′) only

differs from 0 whenσ = ηk,ξ andσ ′ = η′k,ξ ′ for someξ, ξ ′ ∈ �0.
In a first step of the coupled dynamics, an indexk is selected from the set{1, 2, . . . , N},

each choice having a probability 1/N . Then, the variable(η(k), η′(k)) is updated according
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to the following transition probabilities:

p
(k)

β,β̃
(ηk,ξ , η′k,ξ |η, η′)

=



min{p(k)β (ηk,ξ |η), p̃(k)β̃ (η
′k,ξ ′ |η′)} if ξ = ξ ′[

var(p(k)β (η
k,·|η), p̃(k)

β̃
(η′k,·|η′))]−1

× (p(k)β (ηk,ξ |η)− p(k)β,β̃ (η
k,ξ , η′k,ξ |η, η′))

× (p̃(k)
β̃
(η′k,ξ

′ |η′)− p(k)
β,β̃
(ηk,ξ

′
, η′k,ξ

′ |η, η′)) if ξ 6= ξ ′.

(30)

The full transition probability is

Probβ,β ′(σ, σ
′|η, η′) = 1

N

N∑
i=1

p
(i)

β,β̃
(σ, σ ′|η, η′). (31)

Notice that the individual transition probabilities (30) have the following property:

p
(k)

β,β̃
(σ (k) 6= σ ′(k)|η, η′) = var(p(k)β (η

k,·|η), p̃(k)
β̃
(η′k,·|η′)). (32)

Starting from (31), the prescription in (2) allows us to construct the coupled dynamics
(σn, σ

′
n)n=1,2,... on�×�.

Applying this coupling, we connect two copies of the same dynamical system,(σn)n=1,2,...

and(σ ′n)n=1,2,..., started with different initial configurations,η andη′, at timen0. Next, we
assign to this dynamics the following{0, 1} × {1, 2, . . . , N}-valued process(s(n), S(n))n∈Z.

For eachi = 1, . . . , N we set(s(n0 + i −N), S(n0 + i −N)) = (1, i) if η(i) 6= η′(i) and
(s(n0 + i −N), S(n0 + i −N)) = (0, i) otherwise.

For eachn > n0, we putS(n) = jn, whenσ(jn) is the variable that is updated at time
n, and we sets(n) = 1 as soon asσ(jn) 6= σ ′(jn). Whenσn(jn) andσ ′n(jn) are equal, then
(s(n), S(n)) = (0, jn).

Now, it is important to notice that, due to (32),s(n) = 1 can only happen when there is at
least one sitej for whichσn−1(j) 6= σ ′n−1(j) at the time stepn− 1. If for this j , k < n is the
last time thatS(k) = j , then this implies thats(k) = 1. In other words, the events(n) = 1
can only happen when there exists a sequence of integersn = m0 > m1 > · · · > mk, k > 1
so thatmk 6 n0, s(mi) = 1, i = 1, . . . , k, and

{S(j) : mi−1 < j < mi} 6= {1, 2, . . . , N}.
We denote the event that there exists such a sequence by{n −→ n0}. So, when{n −→ n0} is
not true, thens(k) = 0 andσk = σ ′k for all k > n.

Notice that{n −→ n0} is only a function of the variables(s(k), S(k)), k < n, for k strictly
smaller thann.

It is now straightforward to see from (32) that the probability thats(n) = 1 is not larger
than

qβn =
max

k
max
η,η′

var(p(k)β (η
k,·|η), p(k)β (ηk,·|η′)) whenn > n0

1 otherwise.
(33)

Finally, we assign to everyn ∈ Z Bernoulli random variables̃s(n) with densityqβn as
defined above. Denote byνq the joint probability distribution of the variabless̃(n) andS(n).
Then, for every finite3 ⊂ Z and any set(j1, . . . , j|3|) ∈ {1, . . . , N}|3|,

νq((s̃(n), S(n)) = (1, jn), ∀n ∈ 3) =
(

1

N

)|3|∏
n∈3

qβn .
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Combining all these ingredients, we can conclude that for the coupled process

Prob[σn(i) 6= σ ′n(i)|σn0, σ
′
n0] 6 νq(n −→ n0). (34)

Lemma 1. When

lim
n↑∞

nα(1− qβn) = ∞ (35)

for some0 < α < 1/N , then there exist constantsC = C(N, α, {qβn}n∈N) < ∞ and
λ = λ(N, α) > 0 such that

νq(m −→ n) 6 C exp(−λ(m1−Nα − n1−Nα)).
Proof. {m −→ n} does not happen as soon as there is a set

{k + 1, k + 2, . . . , k +N} ⊂ Z
with

k ∈ {n, . . . , m−N − 1}
so that

{S(i), i = k + 1, . . . , k +N} = {1, . . . , N}
and

s(i) = 0 for k + 16 i 6 k +N.

Denote bybxc, x ∈ R, the largest integer that is not larger thanx, then

νq(m + 1−→ n) 6
b(m−n)/Nc∏

i=1

νq
({S(j) : j = m−N(i − 1), . . . , m−Ni + 1} 6= {1, . . . , N}

or ∃k ∈ {m−N(i − 1), . . . , m−Ni + 1} such thats(k) = 1
)

6
b(m−n)/Nc∏

i=1

(
1− N !

NN

m−N(i−1)∏
k=m−Ni+1

(1− qk)
)
. (36)

Condition (35) implies that there exists a timen′ = n′(α, {qβn}n∈N) such thatqβn 6
1− 1/nα as soon asn > n′. Hence, for largen,

νq(m + 1−→ n) 6
b(m−n)/Nc∏

i=1

(
1− N !

NN

m−N(i−1)∏
k=m−Ni+1

1

kα

)

6
b(m−n)/Nc∏

i=1

(
1− N !

NN

1

(m−N(i − 1))Nα

)

6 exp

(
− N !

NN

b(m−n)/Nc∑
i=1

1

(m−N(i − 1))Nα

)
since 1− ε 6 e−ε for sufficiently smallε.

Using the fact that(n + 3N)1−Nα 6 n1−Nα + (3N)1−Nα, the proof of the lemma can be
completed as follows:

νq(m + 1−→ n) 6 exp

(
− N !

NN

b(m−n)/Nc+1∫
1

dx

(m−N(x − 2))Nα

)
6 exp

(− λ((m +N)1−Nα − (n + 3N)1−Nα)
)

6 exp
(
λ(3N)1−Nα

)
exp

(− λ(m + 1)1−Nα
)

exp
(
λn1−Nα)

with λ = (N !/NN)(N(1− αN))−1. �
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5. Proofs

Proof of theorem 1. Using (34) and lemma 1 we see that

|Pn0,nf (η)− Pn0,nf (η′)| 6
∑
σ,σ ′
|f (σ)− f (σ ′)|Probn0,n[σ, σ ′|η, η′]

6
N∑
i=1

1if Probn0,n[σ(i) 6= σ ′(i)|η, η′]

6 |||f |||max
i

Probn0,n[σ(i) 6= σ ′(i)|η, η′]
6 |||f |||νq(n −→ n0)

6 C|||f ||| exp(−λ(n1−Nα − n1−Nα
0 ))

for someC = C(N, α, {qβn}n∈Z) <∞ andλ = λ(N, α) > 0. �

Proof of theorem 2. For anyn0 < n

‖P 0,nf − µ∞(f )‖ = ‖P 0,n0[Pn0,nf ] − µ∞(f )‖
6 |µ∞(f )− µβn(f )| + ‖µβn0+1(P

n0,nf )− Pn0,nf ‖
+ |µβn(f )− µβn0+1(P

n0,nf )|. (37)

By the definition ofµ∞, the first term vanishes whenn tends to infinity. Since the dynamics
verifies the conditions of theorem 1, also the second term goes to 0 whenn grows. This
happens with a rate given by (7). To estimate the last term we observeµβ(Pβf ) = µβ(f ) for
everyf ∈ B(�). So

|µβn(f )− µβn0+1(P
n0,nf )|

6 |µβn(f )− µβn0+2(P
n0+1,nf )| + |µβn0+2(P

n0+1,nf )− µβn0+1(P
n0,nf )|

6 |µβn(f )− µβn0+2(P
n0+1,nf )| + |µβn0+2(P

n0+1,nf )− µβn0+1(P
n0+1,nf )|.

We can repeat this procedure until we get that

|µβn(f )− µβn0+1(P
n0,nf )| 6

n−1∑
k=n0+1

|µβk+1(P
k,nf )− µβk (P k,nf )|. (38)

Sinceµβ is the unique invariant probability distribution of the time homogeneous dynamics
P

0,n
β , we know that for everyg ∈ B(�) and all valuesβ andβ ′

|µβ(g)− µβ ′(g)| = lim
k↑∞
‖P 0,k

β g − P 0,k
β ′ g‖. (39)

We first consider the right-hand side for a finite timen and use the coupling (31) to see
that for everyη ∈ �
|P 0,n
β g(η)− P 0,n

β ′ g(η)|

6
n−1∑
k=0

|P 0,n−k
β [Pn−k,nβ ′ g](η)− P 0,n−k−1

β [Pn−k−1,n
β ′ g](η)|

6
n−1∑
k=0

max
η
|(Pβ − Pβ ′)P n−k,nβ ′ g(η)|
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6
n−1∑
k=0

max
η

∑
σ,σ ′
|Pn−k,nβ ′ g(σ )− Pn−k,nβ ′ g(σ ′)|Probβ,β ′ [σ, σ

′|η, η]

6 1

N

N∑
j=1

n−1∑
k=0

(1jP
n−k,n
β ′ g)max

η
p
(j)

β,β ′(σ (j) 6= σ ′(j)|η, η)

6 max
j,η

var(p(j)β (η
j,·|η), p(j)β ′ (ηj,·|η))

n−1∑
k=0

|||Pn−k,nβ ′ g|||. (40)

To estimate the total oscillation of the functionPn−k,nβ ′ g, we need an argument similar
to that used in the proof of theorem 1. The only difference is that here we consider a time
homogeneous dynamics. Hence

|||Pn0,n
β ′ g||| =

N∑
i=1

max
η

max
ζ
|Pn0,n
β ′ g(η)− Pn0,n

β ′ g(ηi,ζ )|

6 N |||g|||νhom
q (n −→ n0). (41)

Hereνhom
q is the joint probability distribution of the independently distributed Bernoulli random

variabless̃(k), k ∈ Z with density

qβ ′ = max
n

max
η,η′

var(p(n)β ′ (η
n,·|η), p(n)β ′ (η′n,·|η′))

and the variablesS(k), k ∈ Z, as we defined in the previous paragraph. Analogous to (36) this
can be bounded from above by

N |||g|||
(

1− N !

NN
(1− qβ ′)N

)b(n−n0−1)/Nc
.

So

lim
n↑∞

n−1∑
k=0

|||Pn−k,nβ ′ g||| 6 N |||g||| (1− (N !/NN)(1− qβ ′)N)−(1+1/N)

1− (1− (N !/NN)(1− qβ ′)N)1/N

6 2
NN+1

N !
|||g|||(1− qβ ′)−N (42)

whenβ ′ is large enough.
If we combine (39), (40) and (42), we obtain the result that, for sufficiently largen0, (38)

is not larger than

2
NN+1

N !

n−1∑
k=n0+1

(1− qβk )−N max
j,η

var(p(j)βk (η
j,·|η), p(j)βk+1

(ηj,·|η))|||P k,nf |||

6 CN
N+2

N !
|�0| |||f ||| exp(−λ(n1−Nα))

n−1∑
k=n0+1

kαN−δ exp(λ(k1−Nα)) (43)

for someC <∞ andλ > 0.
In the last inequality we applied condition (9) and theorem 1 to estimate|||P k,nf ||| and

(1− qβn)N and we used the fact that condition (9) allows us to compute the following upper
bound:

var(p(n)βk+1
(ηn,·|η), p(n)βk (ηn,·|η)) =

1

2

∑
ξ∈�0

∣∣∣p(n)βk+1
(ηn,ξ |η)− p(n)βk (ηn,ξ |η)

∣∣∣
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= 1

2

∑
ξ∈�0

∣∣∣∣ d

dt
p
(n)
βt
(ηn,ξ |η)

∣∣∣∣
t=tk

6 1
2|�0|k−δ.

for somek 6 tk 6 k + 1, whenk is large enough.
For sufficiently largen0, the sum in (43) is smaller than

n∫
n0+1

(k + 1)αN−δ exp(λ(k + 1)1−αN)

6 1

λ(1− αN)(n0 + 2)2αN−δ
[
exp(λ(n + 1)1−αN)− exp(λ(n0 + 2))1−αN

]
and since(n + 1)1−αN 6 n1−αN + 1, this is not larger than

eλ

λ(1− αN)(n0 + 2)2αN−δ exp(λn1−αN).

We insert this in (43) and use this upper bound to estimate (37). Sinceδ > 2αN , we can
conclude that the dynamics is strongly ergodic with asymptotic probability distributionµ∞ by
first taking the limitn ↑ ∞ and then the limitn0 ↑ ∞. To obtain the rate (10), it suffices to
taken0 = nχ everywhere in the previous proof, for some 0< χ < 1 sufficiently large. �

Proof of theorem 3.

‖µ∞(f )− P̃ 0,nf ‖ 6 ‖µ∞(f )− P 0,nf ‖ + ‖P̃ 0,nf − P 0,nf ‖.
Since the dynamicsP 0,n is strongly ergodic withµ∞ the asymptotic probability distribution,
the first term on the right-hand side vanishes whenn tends to infinity.

Using the coupling (31) and lemma 1, the second term can be bounded as follows:

n−1∑
k=0

‖P̃ 0,k[P k,nf ] − P̃ 0,k+1[P k+1,nf ]‖

6
n−1∑
k=0

‖(Pβk+1 − P̃β̃k+1
)P k+1,nf ‖

6
n−1∑
k=0

∑
σ,σ ′
|P k+1,nf (σ )− P k+1,nf (σ ′)|max

η
Probβk+1,β̃k+1

[σ, σ ′|η, η]

6 1

N

n−1∑
k=0

N∑
j=1

1jP
k+1,nf max

η
p
(j)

βk+1,β̃k+1
[σ(j) 6= σ ′(j)|η, η]

6
n−1∑
k=0

|||P k+1,nf |||max
j,η

var(p(j)βk+1
(ηj,·|η), p̃(j)

β̃k+1
(ηj,·|η)). (44)

If we now apply theorem 1 to estimate|||P k+1,nf ||| and use condition (11), we see that
the last sum is not larger than

C exp(−λn1−Nα)
n−1∑
k=0

(k + 1)−δ exp(λ(k + 1)1−Nα)

for some finiteC <∞ andλ > 0, both independent ofn.
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Writing the sum as

bn1/2c∑
k=1

k−δ exp(λk1−Nα) +
n−1∑

k=bn1/2c
k−δ exp(λk1−Nα)

we can use the same argument as in the previous proof to see that the upper bound (44) tends
to 0 as soon asδ > Nα. �

Proof of theorem 4. Consider the energy function (23). Then, whenβ is large enough, the
dynamics with (individual) transition probabilities (15) is attractive. Furthermore,µβ 6 µβ ′
as soon asβ 6 β ′. So, for largeβ1 and for the decreasing functionI−1, we see that

µβn(I−1) = µβn(PβnI−1)

6 µβn−1(PβnI−1)

= µβn−1(Pβn−1PβnI−1)

= µβn−1(P
n−2,nI−1).

If we repeat this procedure, we obtain the result that

µβn(I−1) 6 µβ1(P
0,nI−1).

In other words,

µβ1(P
0,nI−1) 6 n−δ

can only hold when

µβn(I−1) 6 n−δ

or when

e−βnUmin

1 + e−βnUmin + (2N − 2)e−βnUmax
6 n−δ.

For largen, this inequality can only be satisfied when

βn >
δ

2Umin
logn. (45)

This choice forβn, however, is in contradiction with the assumption that the dynamics
is ergodic. Indeed, when (45) is true for largen, then there exist constantsn0 > 0 and
C = C(n0) > 0 such that forn > n0

P 0,n
(
σn = σn−1 = · · · = σ0|σ0(i) = −1, i = 1, . . . , N

)
=

n∏
i=1

1

1 + (N − 1)e−βi(Umax−Umin)

> C
n∏

i=n0

1

1 + (N − 1)i−δ(Umax−Umin)/2Umin
> 0

uniformly in n.
This implies that when the dynamics is started with the initial configuration i.e. the all

minus configuration, then, with a strictly positive probability, it will stay in this configuration,
and never reach the wished asymptotic probability distribution. Hence theorem 4 holds.�
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Appendix

Lemma A1. The dynamics with transition probabilities (15) and withβn = ε logn satisfies
condition (9) for any0< δ < 1, independently ofε > 0.

Proof. Since for everyn, η, ζ ,∣∣∣∣ d

dt
p
(n)
βt
(ηn,ζ |η)

∣∣∣∣ = ∣∣∣∣ d

dβt
p
(n)
βt
(ηn,ζ |η) d

dt
βt

∣∣∣∣
=
∣∣∣∣ d

dβt
p
(n)
βt
(ηn,ζ |η)ε

t

∣∣∣∣
6 2εUmaxt

−1

the lemma follows immediately. �

Lemma A2. When for everyλ > 0 there exists aC <∞ such that

F ′(λx)
F ′(x)

< C (A1)

uniformly inx, then the dynamics with transition probabilities (26) and with

βn = 1

Umax
F−1

( |�0|
nε

)
(A2)

satisfy condition (9) for every0< δ < 1, uniformly inε > 0.

Notice that this lemma covers the examples mentioned in paragraph 3, i.e.F(x) =
(1 +x)−λ, λ > 0 andF(x) = (1 + log(1 +x))−1.

Proof. For everyk, η, ζ ,∣∣∣∣ d

dt
p
(k)
βt
(ηk,ζ |η)

∣∣∣∣
=
∣∣∣∣ d

dβt
p
(k)
βt
(ηk,ζ |η) d

dt
βt

∣∣∣∣
=
∣∣∣∣∣(U(ηk,ζ )F ′(βtU(ηk,ζ ))

[ ∑
ζ∈�0

F(βtU(η
k,ζ ))

]−1

−F(βtU(ηk,ζ ))
[ ∑
ζ∈�0

U(ηk,ζ )F ′(βtU(ηk,ζ ))
][ ∑

ζ∈�0

F(βtU(η
k,ζ ))

]−2

× �0

Umax
εt−1−ε

[
F ′
(
F−1

( |�0|
t ε

))]−1
∣∣∣∣∣

6 εt−1−ε |�0|(|�0| + 1)max
ζ

∣∣F ′(βtU(ηk,ζ ))[F(βtUmax)F
′(βtUmax)]

−1
∣∣

6 C|�0|2εt−1

for someC = C(U) < ∞. In the last step we used (A1) and (A2) to replaceF(βtUmax) by
|�0|/nε and to estimate the ratioF ′(βtU(ηk,ζ ))/F ′(βtUmax). �



5406 G Gielis and C Maes

Lemma A3. If βn = β̃n = (α/2Umax) logn, then the condition (11) of theorem 3 is satisfied
for the dynamical systems (15) and (29).

Proof. Let x, y andβ be constants such thatβ > 0, y > 0 and e−βyβx > −1. Consider then

|e−βx − (1 + e−βyβx)−eβy |
= e−βx |1− eβx(1 + e−βyβx)−eβy |
= e−βx |1− exp(βx − eβy log(1 + e−βyβx)|
= e−βx

∣∣1− exp
(

1
2(βx)

2e−βy − 1
3(βx)

3e−2βy + · · ·)∣∣
6 1

2(βx)
2e−βxe−βy + e−βxo

(
1
3(βx)

3e−2βy
)
.

So

(1 + e−βyβx)−eβy = e−βx + θe−βx
(

1
2(βx)

2e−βy + o( 1
3(βx)

3e−2βy)
)

≡ e−βx +R(x)

in which θ = θ(x, y, β) can be−1 or +1.
Next, we consider a set ofM numbersxi, i = 1, 2, . . . ,M, such thatx1 = 0 and for every

i, e−βyβxi > −1. Then

M∑
i=1

∣∣∣∣∣ e−βxi∑M
i=1 e−βxi

− (1 + e−βyβxi)−eβy∑M
i=1(1 + e−βyβxi)−eβy

∣∣∣∣∣
=

M∑
i=1

∣∣∣∣∣ e−βxi∑M
i=1 e−βxi

− e−βxi +R(xi)∑M
i=1 e−βxi +R(xi)

∣∣∣∣∣
6

M∑
i=1

∣∣∣∣∣ e−βxi∑M
i=1 e−βxi

− e−βxi∑M
i=1 e−βxi

(
1−

∑M
i=1R(xi)∑M
i=1 e−βxi

−
(∑M

i=1R(xi)∑M
i=1 e−βxi

)2

− · · ·
)∣∣∣∣∣

+
M∑
i=1

∣∣∣∣∣ R(xi)∑M
i=1 e−βxi +R(xi)

∣∣∣∣∣.
We used the fact that, sincex1 = 0, we know that

∑M
i=1 e−βxi >

∑M
i=1Ri as soon asβ is large

enough. For the same reason
∑

i e−βxi > 1 and
∑

i (e
−βxi + R(xi)) > 1

2. Hence, whenβ is
large, the above expression is smaller than

Cmax
i

{
1
2(βxi)

2e−βxie−βy + o
(

1
3e−βxi (βxi)3e−2βy

)}
for some constantC <∞, independent ofxi, i = 1, 2, . . .M, y, andβ.

To prove the lemma we replace the index set{i, i = 1, . . . ,M} by the set�0, the numbers
xi, i = 1, 2, . . . ,M,, by the numbers(U(ηk,ζ )− U(η)), ζ ∈ �0, for k fixed, andβ by βn. If
we takey > 3NUmax, we obtain an upper bound for

var(p(k)βn (η
k,·|η), p̃(k)

β̃n
(ηk,·|η))

which decreases faster thann−αN , independently ofη andk. �
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