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Abstract. We study time-inhomogeneous stochastic dynamical systems with vanishing noise.
Conditions implying strong ergodicity are proposed; the asymptotic probability distribution is
characterized and we estimate the speed of relaxation. Applying these results to simulated annealing
enables us to introduce systems that converge faster than a classical annealing dynamics determined
by a Gibbs factor.

1. Introduction

There is a long tradition of applying and studying the technique of simulated annealing. This
well known method allows to locate the absolute minima of a complicated energy landscape.
The mainideais to run atime-inhomogeneous dynamics for which on every (discrete) time step
n the Gibbs probability distributiop g, , with respect to the considered energy function and at
temperatures,, is invariant for the applied transition. The hope is thatwhgm =1, 2, .. .,
gradually increases this dynamics approaches the probability distriquiios: lim gqo wp.
This distribution assigns equal weights to all the states where the energy is minimal.

To limit the computation time, one is inclined to increase the inverse tempe@tae
fast as possible. However, when the system is cooled too quickly, itis possible for it to become
stuck in a local minimum and, as a consequence, for it never to reach the desired probability
distribution. So, a central question is to find the optimum cooling schedule. A first rigorous
result was given by Geman and Geman [3]. They showed that, for a system in which the
energy of a configuratioa of N different variables i€/ (¢), the simulated annealing process
is successful as soon as

1

Bn < - I
N[max, U (o) — min, U(o)]
for large timesn. Afterwards, this result was confirmed for similar dynamical systems by
Gidas [4], Holley and Stroock [6], Hollegt al [5], and Deuschel and Mazza in [2] and
references therein. Moreover, in several of these papers the result was completed by the
calculation of an upper bound for the rate at which the dynamics reaches its asymptotic
distribution.

ogn
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Recently, some new computer simulations have pushed this discussion in a new direction.
Penna and Tsallis [8] and Stariolo [9] proposed new algorithms in which the transition
probabilities do still depend on the ‘temperature’ and the energy, but in a different form
than in the standard Gibbs factor. Nevertheless, the simulations suggest that the asymptotic
probability distribution is the same and, in addition, it seems that these new systems relax
faster than the classical simulated annealing procedures.

In this paper, we first extend the ideas of simulated annealing to a more general class of
stochastic dynamics. The energy function will no longer play a central role and the notion of
temperature is replaced by a more general notion of noise. More precisely, we consider serial
update, discrete time Markov processes in which the noise level is asymptotically extinguished.
We introduce conditions on the rate at which this happens, ensuring that the dynamics remain
ergodic. The same result allows us to characterize the asymptotic probability distribution and
to estimate the speed of convergence. Finally, we propose a criterion that is useful in comparing
the asymptotic behaviour of different dynamical systems. All these results are formulated in
section 2 of the paper.

In section 3 we apply the theorems to simulated annealing. We not only recover, in a
very simple way, some known results, but also propose new dynamical rules that allow a more
efficient location of the absolute minima in the energy landscape.

Next, in section 4, we propose a very useful coupling between two dynamics. This coupling
plays a key role in several of the proofs collected in section 5. Finally, in the appendix, one
can find the necessary, but rather trivial calculations supporting some statements made in the
main text.

2. Definitions and main results

We considerN variableso (i),i = 1,..., N. For everyi, the variabler (i) takes values in
the finite seto = {1,2,..., M}, M € N. This gives rise to a configuration spa@e= QY
which is theN-fold Cartesian product of the s&. For every configuration € 2, we call
o (i) the state of theéth variable. The set of real-valued functions @ris denoted by3($2)
andP () is the set of all possible probability distributions @n

Foru € P(Q2) and f € B(R2), we denote by(f) the expected value of with respect
tou. || fll = maxeq | f(n)| is the (supremum) norm of and the oscillation at is defined
by A; f = maX,cq Maxcq, | £ (n"*) — f(n)|. Herein is the configuration*, n € Q, ¢ € Qo
such that

N B[N P AT
n ()= L
¢ if j =1i.
N
Finally, the semi-norni|| f||| = >_ A; f is called the total oscillation.

i=1

We introduce a discrete time, serial update stochastic dynamies= 1,2, ..., onQ.
o, is the configuration at time. To construct this dynamics we start from a sequence of
probability kernelsPs, (-|-), B, =2 0,n =1, 2, ..., from x Q to [0, 1], which assign to every
n € Q the probability distributionsPs, (-|7) € P(2). The transition probabilityPs, (o 1)
gives the probability to obtain the configuratierat timen, when the previous configuration
wasn. The parameterg,,n = 1, 2, .. ., are supposed to determine the amount of noise in the
system. The highes,, the lower the noise level. This will be clear from the examples. We
imagine that thes, are taken from a non-decreasing positive funcion > O.

Inthe serial update dynamics studied in this paper, the varialti¢si = 1,2, ..., N, are
modified one by one, in a random order. This means that on every time step, first animdex
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selected fromthe s¢l, 2, ..., N} with probability 1/ N and then the configuration is updated
fromo,_1 = 5 to 0, = o according to some individual probability Iapjjn) (o|n). This law is
such that the probability;;’ (o|») differs only from 0 whens = n"¢ for somet € Q0. The
full transition probability can then be written as

1Y,
Py (o) = <> pp@lm. 1)
i=1

Starting from (1), we define for positive integegs n, withng < n, the transition operators
Pg, and P"" acting onf € B(2), as follows:

P f(n) = f(n)
P"1n f(n) = Py, £ () = %f(a)P/gn(ah}) )

and by iteration
P f(n) = Py, ,[P"*" f1() = Y [P™*" f(0)] Py, (0 [0).

oeQ
So, P™" f(n) is the expected value of the functignat timer, when the configuration at time
no wasn. When the noise depends on the time in a non-trivial way, the dynamics becomes
time-inhomogeneous. Otherwise we have a time-homogeneous evolution. The latter case, this
is wheng, = g for a fixed numbep on every timez, will be emphasized by adding an extra
index 8 to the transition operators, i.e. we WriR§°’” instead ofp™o".

Itis well known that as soon as the noise is non-zero, in our examples this will correspond
to B8 < oo, very mild conditions (e.g., that the dynamics is an irreducible and aperiodic Markov
chain) imply that there exists a unique invariant probability distributigrsuch that for every
nop<n

g (Pg*" ) = wp(f) 3)
and

1P f — pug(f)] < Cemo (4)

for some constants > 0 andC = C(A, f) < oo. For this reason, we feel free to assume as a
hypothesis the existence of such a probability distribution for the time-homogeneous versions
of the dynamics studied in this paper.

In this paper we focus on the non-homogeneous case. Since for this kind of dynamics,
in general, there does not exist any longer a probability distribution that remains unaffected
at every time step, it becomes more complicated to predict the asymptotic behaviour of these
systems. One can ask whether an expression similar to (4) still holds, knowing that equation
(3) cannot be satisfied. To address this problem, we introduce the following two notions.

Definition 1. A dynamics is called weakly ergodic if for every functipre B(€2) and every
initial time ng

lim sup|P™" f () — P"™" f(n")| = 0.
ntoo n

Weak ergodicity implies that the asymptotic behaviour of the dynamics becomes
independent of its initial configuration. This statement does not say anything more about
this behaviour. It is for instance not necessary that the dynamics converges and if it does, it is
not clear what the limit will be. The following definition allows for these shortcomings.

Denote byug the unique probability distribution that satisfieg(Ps f) = ng(f) and
suppose that limy g, exists for some sequengg, n =1,2, ... .



5392 G Gielis and C Maes
Definition 2. A dynamics is called strongly ergodic if for every functipre B(2) and every
initial time ng
lim | P*" f — poo (f) = 0
ntoo
with
Moo (f) = 1im pg, (f).
ntoo
To state our results in this context, we rely on the following parameters:
a5, = maxmaxvar(py (1 n), pj, (7" i1). ()
Here var denotes the variational distance between probability distributions: for two
distributionsp; andu, on g (or on2), this distance is defined as

1
var(ua, p2) = 5 3 11a(@) = pa(@) < 1

The sum is ovef2, (or over).

When thegg, approach 1, the dynamics becomes strongly dependent on the past, which
corresponds to the low noise (high regime. The first result says that, in order to have weak
ergodicity, lim,1 gg, = 1 is allowed as long as the convergence to 1 is slow enough.

Theorem 1. When

lim n*(1—gp,) = o0 (6)

ntoo
for somed < o < 1/N, then the dynamics is weakly ergodic. Moreover, there exist constants
C =C(N, «, {gp,}nen) < 00 andr = A(N, «) > 0 such that for every € B()

Sup|P"" f () — P"" £ ()| < CIII f1I| exp(=A(n* =" — ng*~")) @

0,
for everyng < n.

Under the extra condition that the transition probabilities are smooth enough functions of

the time for large:, we also can prove strong ergodicity.

Suppose thalf (1) = max, , Zo|%ng)(a|n)| exists, then the following result holds.

Theorem 2. When

IiTm n“(l—gqg,) =00 8)
and

IiTm *°T(@) =0 9)

1100

forsomed < @ < 1/N andé§ > 2a N, then the dynamics is strongly ergodic. Moreover, there
existaconstar < y < § —2aN and aconstan€ = C(N, M, «, 8, v, {qp, }nen) < 00 such
that

PO f — poo (O < Ittos(f) — a (O + ClIflInY (10)
for every f € B(Q).

In a final result the asymptotic probability distributions of different strongly ergodic
dynamics are compared. More precisely, we propose conditions that allow to define a set
of dynamical systems that are all strongly ergodic and that all have the same asymptotic
probability distribution as a given reference dynamics.
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Theorem 3. Suppose that the dynamics with transition operatabs>"),, , satisfies the
conditions (8) and (9). When another dynami&ge"),, ,, satisfies

lim n® maxvar(pj; G In), py(n'" 1) = 0 (12)

ntoo

for somes > aN, then this dynamics also is strongly ergodic and has the same asymptotic
probability distribution, i.e.

:aoo(f) = Moo(f)
for every f € B(Q).

Remark 1. Under the general condition (6), theorem 1 is optimal. To see this, we consider
for instance the following very simple system @n= Q¢ = {—1, +1}:

1- %e‘ﬁn ifo=n

%e‘ﬂ" if o # 1.

Wheng, = (1 +6) log(1 +n) for somes > —1, then
1

(1 +n)l+6 :

So, condition (6) is only satisfied wheh < 0. In the other case, i.e. when> 0, the
inequality (7) is violated. Indeed, It (o) be the function that gives 1 when= +1 and O

Py, (oln) =

gp, =1—-ePh =1~

wheno = —1, then the following identity holds:
|PO" [ (+1) — PO I, (—1)|
= |- e P (+1) + te P (-1

- %e—ﬂlpl’"1+(+1) (1- e PPt (-)|
=(1—€ﬁMPLM4+D—fﬂH4—D|

= ﬁ(l —ef)
i=1
- H( (i + 1)1“'5) (12)

When§ = 0 this implies that

|PO"1(+1) — PO"L(-D)| = (n+ D)L,
Whens > 0, the right-hand side of (12) is strictly positive uniformlyrirand the dynamics is
no longer weakly ergodic.

Remark 2. One of the advantages of theorem 2 is that it does not require knowledge of
the invariant probability distributionsg,,n = 1,2,.... This is in contrast to some other
arguments proving strong ergodicity. For instance, in [3] the following condition appears:

o0
Zvar(u,s,,, Upn+1) < O0. (13)
n=1

Remark 3. It is also interesting to notice that condition (9) becomes weaker as soon as the
parametety in (8) is smaller, which implies that the convergence in (7) is faster. It is not so
hard to extend our argument to see that if for everys, < € for somee < 1, then an upper
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bound (7) holds which decreases exponentially fast whenny grows. In that case, it is
sufficient thatl"(+) converges to O in order to get a strongly ergodic system.

Example 1. Let Qo = {—1, +1}. Assigntoevery = 1,2,..., N two disjoint subsetd; and

B; of {1, 2, ..., N}. However, sets with different indicésan overlap. Define
py (i) = et ' Sgn[j;; "o ; n(j)] 70
teh otherwise.
In this model
qp, =1-¢€"

which means that, givea < 1/N, condition (6) is satisfied as soon as, for ary< «
andn large enoughg, < (¢//N)logn. Moreover, wherB, = ¢ logt for somee > 0, then
maX, .. | & pi (o) = 2er~1*). Hence, condition (9) is satisfied for every: 1, uniformly

ine > 0. So, takingx = ﬁ, we see that the dynamics is strongly ergodicpe= % logn

and the second term in the right-hand side of (10) decays with a ratg G< 1/2.

3. Simulated annealing

In this section, we apply the above results to simulated annealing. We assume that the energy
function to be minimized is a non-negative functine B(£2) such that mip U(o) = 0 and
max, U (o) = Unax for some finiteUnmax < 0o. We define2 (U) to be the set of minima

QU)={ceQ:U()=0
and for a given configuration, we defines, as the probability distribution with the following

prescription:
1 ifn=o0
3y (fl) =
0 otherwise.

Finally, umin is the probability distribution that assigns equal weights to all the elements of
Q),i.e.forf € B(RQ)

Mmin(f) =

> f. (14)

oceQ(U)

1
5a(f) =
Q)| ﬁ;w) 1)
We propose several possible dynamical rules that are all indexed by the energy féhction
and atime-dependent noise parameter (temperadjir&ye look to see under which conditions
on B, these dynamics are strongly ergodic, we wonder which of them haweas asymptotic

probability distribution and we investigate the relaxation behaviour.

Example 2. The first example is the analogue of the so called heat bath algorithm and is
determined by the Boltzmann—Gibbs distribution, i.e.

ph, "1 = exp(—B.[U () — U] (15)

Zg, ()

with n € Q, ¢ € Qo andZg, (1) the normalization constant. The only probability distribution
that solves the equatiqrg, (P, f) = ug, (f) forevery f € B(2), is given by the Boltzmann—
Gibbs distribution:

1
up, (@) = —— exp(—p, U (0)). (16)

n
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HereZgz =) exp(—pB,U(0)) is the normalizing partition sum.
The corresponding density;, (see equation (5)) can be estimated as follows:

k . k 1k,
9, = m%}xvar(pén)(n"’ ). py (1™ 1))

k k k.l
<maxy " p " Im)py " 1)
k' o

H k k k,
<= min > py < Impg " 'y
o &

. k
< 1—minpg (14 |m)
k.n.¢

1
< 1-— me‘ﬁnl[max. (17)
0

Hence, given O< « < 1/N, condition (8) is satisfied when, for somé < «,

/

Bn < logn (18)

max
as soon as is large enough.

Moreover, we show in lemma Al that wh@p = ¢ logn, for somee > 0, condition (9)
is verified for any O< § < 1, independently of. So, for 0< 2¢N < § < 1 andg, equal to
the right-hand side of (18), theorem 2 applies. This means that for anyO< 1 — 2o N,
there exist constants; = C;(N, M, «, 8, ¥, {gg, }nen) < 00,i = 1, 2 such that

1P f = poo (DI < Ittoe(f) = 1, (NI + Calll fllIn ™
< Coll £l U/ 47 (19)

for Umin = min{U (o) : 0 ¢ QU)}, ¢’ < a andn large enough. Finally, we also notice that
oo IS indeed equal tomin. This follows immediately from (16).

Both equations (18) and (19) confirm earlier results that can be found in [2—6].

For the practical use of simulated annealing it is important to find an algorithm that limits
the computation time. For this reasonitis interesting to develop a dynamical rule that converges
as quick as possible tomin. In the previous example this corresponds to increagiras fast
as possible. However, whesy grows too rapidly, the dynamics may no longer be ergodic.
Another strategy is to construct a completely different dynamical rule for which the Gibbsian
probability distributions may no longer be invariant for the individual steps of the dynamics.

Example 3. A first such alternative example is

(1 +B,U(n*))2 (20)

®) ke y
pg (%) =
n Zg, (m)

wheren € Q, ¢ € Qo and Zg, (n) is the normalization constant. Recall that for every
configurationo, U(o) > 0, so that (20) is well defined. The corresponding invariant
probability distributionsug,, n = 1, 2, ..., assign the following weight to a configuration

(1+B,U0)?
> A+BU@)

oceQ

g, (0) =

Using the fact that minU (o) = 0, we also find thati,, = umin in this case.
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Analogous to (17), we see that

1
qs, <1- 1+ B, Umax)_2
€20

which means that condition (8) is satisfied when, for sathe «,

Bn < o2 (21)

2Wrnad 2l2"

as soon as is large enough.
Furthermore, in lemma A2 it is shown that wh@p = Bn/? for somee > 0 and

B > 0, condition (9) is verified for any O< § < 1, uniformly in e and B. Hence,

when 0 < 2aN < § < 1 and wheng, is equal to the right-hand side of (21), we can

conclude from theorem 2 that for any & y < 1 — 2aN there exist finite constants

Ci=Ci(N,M,a,8,y,{gp,Inen), i =1, 2 such that

1P £ = too (NI < Ittoo(f) = 11, (F)] + Calll FllIn™

Ur%ax —a’ —y 22
< Gl fl T +n (22)
min

for Unmin = min{U (o) : 0 ¢ QU)}, &’ < a andn large enough.

The observation that (22) decreases faster than (19) confirms [7-9]. In these papers
algorithms for simulated annealing different from the Metropolis algorithm, but similar to
(20) are investigated using computer simulations. Also there a faster relaxation is found. Of
course, since (19) and (22) are only upper bounds, we cannot conclude here that the dynamics
determined by (20) indeed converges quicker. This leads us to our last result: theorem 4 allows
to show that the dynamics (15) is atleast not faster than the one with transition probabilities (20).

We first notice that for every potential, we can always choos®,,n = 1, 2, ..., such
that the probabilities (20) verify condition (8) for, for instanee= 1/3N. Hence, setting
o« =1/4N andy = ;11 in the upper bound (22), we observe that it is possible to decrease the
noise so that the dynamics determined by (20) relaxes faster than the fumctiéh when
time increases.

So, in order to prove that the dynamics (15) is in general not faster, it is sufficient to find
one energy functior/ for which the corresponding simulated annealing procedure relaxes
slower tham =4 and this for all possible cooling schedufgsn = 1,2, ... .

Therefore, we tak&y = {—1, +1} and we consider the following potential:

0 fo(i)=+1,i=12,...,N
U(o) = { Unin fo(i)=-1,i=12,...,N (23)
Umax otherwise.

We show that for this potential and for the indicator functiba(o), which is 1 when
o()=-1,i=1,..., N and O for all the other configurations, the following theorem is true.
Theorem 4. Suppose that the potential (23) satisfies

(25_1 + D Unin < Umax (24)
for somes > 0. Then, there exist8, = B.(Umin, Umax, N) > 0such that for every increasing
and diverging sequengk, n = 1, 2, .. ., forwhich the dynamics determined by (15) is strongly
ergodic and that satisfie8; > 8.,

gy (PO 1) = proo ()| = g (PO"1_1) = n™° (25)
as soon aw is large enough.
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Using this theorem fos < ﬁ, it is straightforward to conclude that, for all possible
choicesB,,n = 1, 2, .. ., the transition probabilities (15) determine, in general, not the most
efficient dynamics for simulated annealing. Indeed, we found an upper bound on the rate of
convergence that, by choosing the appropriate sequgnee= 1, 2, . . ., can be satisfied for
every possible energy function when the transition probabilities (20) are applied. However,
there exist potentials so that for all cooling schedules the dynamics (15) is still slower than this
bound.

By the next example we illustrate that the transition rule proposed in (20) is only one
possible choice out of a large class of dynamics.

Example 4. Take any positive, differentiable functioA on R* such thatF(0) = 1,
IiTm F(x) = 0 and that is strictly decreasing. Then, we can define the transition probabilities

P, " In) = F(B,UG15)) (26)

Zg, (1)

with again the same meaning g, (). The corresponding invariant probability distributions
are

F(B,U(0))
= — =12, ...
w0 =S r Uy "

and

1
qp, S 1 = == F(BnUmax-
€20

This implies that (8) is satisfied when, for some< «,

fr< Fl('%') (27)

Umax n¢

as soon as is large enough.

Hence, when we can find out for what,n = 1,2, ..., satisfying (27), there exists a
8 > 2aN so that condition (9) also holds, we obtain a whole set of strongly ergodic dynamical
systems for whichus = umin. Moreover, for any O< y < § — 2aN there exist finite
constantL’; = C;(N, M, «, 8, v, {gp, }nen, F), i = 1, 2 such that

1P f = poo D < litoo () = s, (DI + Calll £l

i Q
szcﬂfH<F<g@5F1(l ?))+n>j
Umax n%

for Umin = min{U (o) : 0 ¢ QU)}, « < «’ andn large enough.

In lemma A2 it is shown that, for instance, for the functidn&) = (1+x)~*, » > 0, and
F(x) = (L+log(1+x))~! there exists a sequengg, n = 1, 2, .. ., that verifies the condition
(8) and the condition (9) for @< § < 1. None of these functions, however, yields an upper
bound for the decay that is considerably faster than (22).

A disadvantage of the previous rules is that they only are well-defined and of interest for
positive energy functions whose minimal value equals 0. The latter is necessary to obtain the
wished asymptotic probability distribution,in. In contrastto example 1, where the dynamical
rule is determined by the Gibbs factor éxBU (¢)), this represents no longer the general
case in which mip U (o) # 0. For practical applications of simulated annealing, however,
we do not explicitly know the full energy function, and we do not knavpriori whether
min, U (o) = 0 is true or not. For that reason it is interesting to modify the above transition
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probabilities to a more general form in which miti (6) = 0 is no longer crucial. In [7-9]
the authors introduce systems similar to the following proposal.

Example 5. For anyA > 0, take

L k,oy_ —A oy _}
7, o (AL GH=U ) whenf, [U () U] > -3

2)\
Zg,(n)

k
Py (1) =

otherwise
(28)

wheren € @, ¢ € Qp andZg, (n) is the normalization constant.
In this case we see that

(1 + By Unmax) "

<1l-
ST 2
This system can be analysed in a manner similar to that used in the previous examples, but
we are not able to verify that the asymptotic probability distribution equals. This leads
us to theorem 3, which enables us to fing, by comparing the dynamics with a reference
dynamics for which we do know the asymptotic distribution.

Example 6. Let g(n) = e3NUnadi: then we can apply theorem 3 to the following transition
probabilities:

1+ -1 ~n U k,& —-U —g(n)
7, o (L8 B —va)
~ 1
By "1 = wheng (m) 6, (U (1) = U(m) > —3 (29)
28(n)
otherwise.
Zz ()

In lemma A3 we use the dynamics of example 2, With= («/2Unay) logn, as a reference
to show that whers, = 8, this dynamics asymptotically approachesgn.

4. A coupling argument

A useful way to compare two dynamical systems is connecting the systems via a coupling. This
means that, given the dynamigs,),—12.. and(o’,),=1.2... 0N 2, with transition operators
(P"")pon and(ﬁ”m”)no,n respectively, we consider a new evoluti@en, o’,),=1.2... 0N x ,

with transition operatorgProld®"),, , such that

Z Probo" [O’, axln’ 77/] — ﬁno,n (O,/In/) and Z Prob“)’”[o, OJ|’77 n/] — P"D’n(O'|T]).
o o

The coupling that we have in mind is constructed using individual transition probabilities
p® (o,0'In, ), k=1,2,..., N, such that, for each, the probabilitypg‘i§ (0, 0'|n, n') only
differs from 0 whers = n*¢ ando’ = n’**' for somet, &' € Q. ’

In a first step of the coupled dynamics, an indes selected from the s¢t, 2, ..., N},
each choice having a probability ¥. Then, the variablén(k), n'(k)) is updated according



A simple approach to time-inhomogeneous dynamics 5399
to the following transition probabilities:
P s S 0 .
min{p” (n*<1m), 5y ("< 1)) if & =&

. ~ 1k, -1
[var(pl” ("), pg‘)(n In")]

- X (py @) = py G 0™ ') o
< (P ") = PG ) e g
The full transition probability is
1
Proly, y (a, o'n, 1) = le Py .ol ). (31)
Notice that the individual transition probabilities (30) have the following property:
Py k) # o' (Wln. ') = var(pg’ (" 1m, by (" n')). (32)

Starting from (31), the prescription in (2) allows us to construct the coupled dynamics
(0,, U/n)n:1,2,... on x .

Applying this coupling, we connect two copies of the same dynamical systgim.-1 2.
and(o’,)n=1.2.., Started with different initial configurationg,andn’, at timeng. Next, we
assign to this dynamics the followir@, 1} x {1, 2, ..., N}-valued procesés(n), S(n)),cz.

Foreach =1,..., Nweset(s(ng+i — N), S(ng+i — N)) = (1,i) if n(i) # n'(i) and
(s(ng+i —N),S(nog+i — N)) = (0, i) otherwise.

For eachwn > ng, we putS(n) = j,, wheno (j,) is the variable that is updated at time
n, and we set(n) = 1 as soon as (j,) # o’'(j,). Wheno, (j,) ando’,(j,) are equal, then
(s(n), S(n)) = (0, jin).

Now, it is important to notice that, due to (32)n) = 1 can only happen when there is at
least one sitg for whicho,_1(j) # o’,_1(j) atthe time step — 1. If for this j, k < n is the
last time thatS(k) = j, then this implies that(k) = 1. In other words, the eventn) = 1
can only happen when there exists a sequence of integersig > mq > -+ > my, k > 1
so thatm; < ng,s(m;) =1,i=1,...,k,and

{SG) mi_1<j<m}#{12,...,N}.

We denote the event that there exists such a sequenige-by> ng}. So, whenn —> ng} is
not true, theny(k) = 0 andoy, = o’y for all k > n.

Notice that{n — ng} is only a function of the variablgs (k), S(k)), k < n, for k strictly
smaller tham.

It is now straightforward to see from (32) that the probability th@t) = 1 is not larger
than

mkax%xvar(p,é")(nk“ln), Py @1y whenn > ng

qp, = (33)

1 otherwise.
Finally, we assign to every € Z Bernoulli random variables(n) with densitygg, as
defined above. Denote by, the joint probability distribution of the variablégn) andS(n).
Then, for every finiteA C Z and any setjy, . .., jja) € {1, ..., N}AL,

1 [A]
Ve ((B(n), Sm) = (1, ju), Vn € A) = (ﬁ) [Tas-
neA
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Combining all these ingredients, we can conclude that for the coupled process

Probfp, (i) # 0, (i)|0ng, 0'ne] < vq(n —> no). (34)
Lemma 1. When
IiTm n“(l—gqg,) =00 (35)

for some0 < « < 1/N, then there exist constants = C(N, a, {gg,}aen) < oo and
A = A(N, a) > 0such that

vy (m —> n) < Cexp(—a(m*™N* — pt=Ney),
Proof. {m — n} does not happen as soon as there is a set
(k+1Lk+2,....k+N}CZ

with

kef{n,...,m— N —1}
so that

(SG),i=k+1,....,k+N}={1,...,N}
and

s@) =0 for k+1<i<k+N.
Denote by x|, x € R, the largest integer that is not larger thgrthen
Lon—n)/N|
vy(m+1—n) < 1_[ vq({S(j):j:m—N(i—l),...,m—Ni+1};ﬁ{l,...,N}
i=1
ordk € {m — NG —1),...,m — Ni + 1} such that (k) = 1)

L(m—n)/N] NI m—N(i—1)
<

[ - Il (1—qk>). (36)

Condition (35) implies that there exists a timé = n'(«, {¢g, }ren) Such thatgg, <
1-1/n% as soon as > n’. Hence, for large:,

[(m—n)/N| NI m—N(i—1) 1
vq(m+1—>n)< 1_[ (1_W l_[ k_‘)‘>

i=1 k=m—Ni+l

L(m—n)/N| | l
< 11 (1 _m : )
1 NN (m — N(i — 1))Ne

N1 Lo/ 1 )

NY & (m—N(@i — 1)V

<o -
since 1— ¢ < e ¢ for sufficiently smalle.
Using the fact thatn + 3N)*V* < nl=N* + (3N)1-Ne | the proof of the lemma can be
completed as follows:
L(m—n)/N]+1

+1 <e ik -
vy (m — n) < Xp<_m / (m—N(x—Z))N{X)
1

< exp( = a(m + N)'M — (n + 3N)1N))

< exp(ABN) ) exp( — A(m + D V) exp(rntN®)
with & = (NU/NV¥)(N (L — aN))~L. O
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5. Proofs

Proof of theorem 1. Using (34) and lemma 1 we see that
[P f(n) — P f(n)] < Z |f (o) = f(o") Proly®"[o, o' |n, 0]

N

< DA fPros*[o (i) # o' D)ln, 0]
i=1

<l maxProB*[o (i) # o' (i)1n. n'

< 1 f1lvg(n —> no)
< CIIfI exp(=am* N — ng™N))
for someC = C(N, «, {gg, }nez) < 00 andr = A(N, «) > 0. O

Proof of theorem 2. For anyng < n
IPO" f — oo (Ol = 1 PO [P f] = poo (/)]
S oo (F) = b, (NI g, (P™" f) = PP F

g, (f) = 1, (P"" I (37)

By the definition ofu, the first term vanishes whentends to infinity. Since the dynamics
verifies the conditions of theorem 1, also the second term goes to O avigeows. This
happens with a rate given by (7). To estimate the last term we obgg(\®; /) = ug(f) for
every f € B(2). So

gy () =ty (P )]
<1y () = Bpgoa (P2 )+ g, o (P ) = g (PO £)]

S, (F) = g (P P+ 11,0 (PP f) = g, o (P ).
We can repeat this procedure until we get that

n—1
g, () = g 2P " OIS D g (PE" f) = g (PE" ). (38)

k=nop+1
Sinceuy is the unique invariant probability distribution of the time homogeneous dynamics
P}?‘”, we know that for everg € B(Q2) and all valuegs andg’
o 0k pOk
p(8) = ()] = im 1P — Py'gll (39)
We first consider the right-hand side for a finite timand use the coupling (31) to see
that for everyn € Q

|Pg"g(n) — Pg" ()

=
=

Sty (VR e VI (O]

i

[N

n—

< D max|(Py — PPy g ()]

o~
|l
o
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-1

< ZmaxZuD" “g(o) — Py " g(0")| Proty p[o, o'|n, 1]

n

:

k=0
N 1
1Zn (8B g maxpll ) (o () # o' (). )
N iPy 8 P, J IUN]
j=1 k=0
< maxvar(py” o7’ |, py’ (n'” In))ZIIIP" “relll. (40)
To estimate the total oscillation of the functidt} "¢, we need an argument similar

to that used in the proof of theorem 1. The only difference is that here we consider a time
homogeneous dynamics. Hence

N
11Pg>" gl = Zmaxmaxw””g(n) P g(n")]

< Nlllgllvy°™(n — no). (41)

Herev;10m is the joint probability distribution of the independently distributed Bernoullirandom
variabless (k), k € Z with density

ap = mnangxvar(pﬂ,)(n 1. pg (™ ')

and the variableS(k), k € Z, as we defined in the previous paragraph. Analogous to (36) this
can be bounded from above by

N L(n=no=1)/N]
N|||g||I<1— A 61;3’)"’)

So
n—1 _ N _ N\—(1+1/N)
anmP "glll < Nlllgll 7 _(1_(N!/NN)(1_%,)N)1/N
NN+1
<2, gl —gp)™ (42)

wheng’ is large enough.
If we combine (39), (40) and (42), we obtain the result that, for sufficiently lagg€38)
is not larger than

NN+1 S Ui D) (i k
2= > A—ap)” ¥ maxvar(pg (n” In). p, (0 )P 7]
k=ng+1
N+2 n—1
< C—— Qo 11 £11l exp(—A (™) Y~ k*V= exp(h (k")) (43)
k=no+1

for someC < oo andi > 0.

In the last inequality we applied condition (9) and theorem 1 to estifaé” f||| and
(1 — gp,)" and we used the fact that condition (9) allows us to compute the following upper
bound:

var(pg (" n). p(”)(n”"ln))—— ‘p,%ﬂl(n”'éln) Py ("% ()
€Qo

E
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1 d
ZEZ

—pg ("% )
&€

dr

=ty
1 -4
< 5120677,

for somek < 1, < k + 1, whenk is large enough.
For sufficiently large:o, the sum in (43) is smaller than

/ (k +1)*N =% exp(A(k + D'*N)

no+l

(no +2)% " [expr.(n + D'V — exp(r(no + 2))* "]

AN

A(1l—aN)
and sincgn + 1)1~V < pl=eN + 1, this is not larger than
- + 2 2aN—§ )\' 1-aN X
A(l—aN)(no ) exp(an )

We insert this in (43) and use this upper bound to estimate (37). Sinc2aN, we can
conclude that the dynamics is strongly ergodic with asymptotic probability distributioby

first taking the limitn 1 oo and then the limikzg 1 co. To obtain the rate (10), it suffices to
takeny = n* everywhere in the previous proof, for some0y < 1 sufficiently large. O

Proof of theorem 3.

oo () = PO Il < llitoo(f) — PO FII+ | PO f — PO f].

Since the dynamic®%" is strongly ergodic with.,, the asymptotic probability distribution,
the first term on the right-hand side vanishes whéends to infinity.
Using the coupling (31) and lemma 1, the second term can be bounded as follows:

n—1
”PO,k[Pk,n f] _ PO,k+1[Pk+l,n f] ”
k=0

=

n—

I(Ppes = Py ) PF £

Br+1

N
i

=

=

N

Z |Pk+1,nf(o.) _ Pk+1v"f(o'/)| mnaXPI’Ot%Ml,f}kﬂ[O" 0J|’79 n]

/

o,0

o~
Il
o

N
z|P

n—1 N
—

Yo AP Fmaxpy) (o () # o' (ln. ]
: n k+1s Pk+1

I
(=}

J
n—1 ) ) ) )

< Y NP n}ngamp;iil(nf“m), By (7 m)). (44)
k=0 ’

If we now apply theorem 1 to estimagP**%" f||| and use condition (11), we see that
the last sum is not larger than
n—1
Cexp(—an* ") Y "k + D)7° expr(k + D)
k=0
for some finiteC < oo anda > 0, both independent of.
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Writing the sum as

Lnl/zj n—1

Zk*a exp(hki—Ne) + Z Kk~ exp(aktNe)
k=1

k=[n12]

we can use the same argument as in the previous proof to see that the upper bound (44) tends
to 0 as soon a8 > Na. |

Proof of theorem 4. Consider the energy function (23). Then, wheris large enough, the
dynamics with (individual) transition probabilities (15) is attractive. Furthermeges g
as soon ag < B'. So, for larges; and for the decreasing functidn;, we see that

mp,(I-1) = pp, (Pp,1-1)
< up, (P, 1-1)
= g, 1(Pp,_ Pp,1-1)
= pp,_,(P""?"1y).
If we repeat this procedure, we obtain the result that
1p, (I-1) < pgy (PO 1),
In other words,
pp (PO 3) <n™
can only hold when
pg,(I-) <n™°

or when
e,ﬂ” Umin

<
1 + e_ﬁnUmin + (2N — 2)e_ﬂnUmax Sn
For largen, this inequality can only be satisfied when

-3

B =

logn. 45
CTI- g (45)

This choice forg,, however, is in contradiction with the assumption that the dynamics
is ergodic. Indeed, when (45) is true for largethen there exist constanty > 0 and
C = C(ng) > 0 such that fon > ng

PO,n(o-,, =01 == GQ|UO(l) = —1,[ = 1’ e, N)
- 1
i=1 l + (N — 1)e_ﬂi(Umax—Umin)

>0

L 1
2 ¢ 1_[ 1 +(N — 1)i*5(Umax*Umin)/2Umin

=no

uniformly in n.

This implies that when the dynamics is started with the initial configuration i.e. the all
minus configuration, then, with a strictly positive probability, it will stay in this configuration,
and never reach the wished asymptotic probability distribution. Hence theorem 4 hdlds.
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Appendix

Lemma Al. The dynamics with transition probabilities (15) and wih = ¢ logn satisfies
condition (9) for any0 < § < 1, independently of > 0.

Proof. Since for every:, n, ¢,

d
dtpﬂ,)(n“ln)’ ’ p,s,)(n”ln)—ﬁz

9, )(n”ln)
dﬁ B
< 2‘5Umaxl‘7l

the lemma follows immediately. O

Lemma A2. When for every. > 0 there exists & < oo such that

Fox (A1)
F'(x)
uniformly inx, then the dynamics with transition probabilities (26) and with
B = LF—l(lg_Ol) (A2)
Unmax ne¢

satisfy condition (9) for ever§ < § < 1, uniformly ine > 0.

Notice that this lemma covers the examples mentioned in paragraph (k.=
(1+x)"*, A >0andF(x) = (1 +log(1l+x))L.

Proof. For everyk, n, ¢,

d &) o kg
g Pe (7 Im

d
'dﬁ p@)(nuln) 3P

-1
= (U(ﬁk’f)F’(ﬁzU(nk"D[ 2 F(ﬂ,u(nk’fﬁ]

£€Q

-2
—FBU 07"‘))[ XU w“)F/(@U(n"*ﬁ)H > F(@U(n"'f))}

e [4S 9

Q Q -1
e [P (2 ()]
Umax té

< et Q0/(1R20] + ) m{ax|F/(ﬂfU(n"’f))[F(ﬂfuma)aF/(ﬂfUma)arl|

< C|Qp|%et™?

for someC = C(U) < oo. In the last step we used (Al) and (A2) to repldo@; Umax) by
|Q0]/n¢ and to estimate the ratiB’(8,U (n*%))/F'(8; Umax)- O
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Lemma A3. If B, = B, = («¢/2Umay) logn, then the condition (11) of theorem 3 is satisfied
for the dynamical systems (15) and (29).

Proof. Letx, y andg be constants such that> 0, y > 0 and €8x > —1. Consider then
le P — (A +e P px) |

—e P 1—ef (L +ePpx)

= e P11 — exp(Bx — € log(1 + € PY Bx)|

=e " |1—exp(3(Bx)%e P — 1(Bx)%e 7 +..)|

< 3(Br)2e Pre P+ ePro((Bx)%e ).

So
L+ePpx) = e +0e " (3(Bx)%e +o((Bx)°e "))
=e P+ R(x)

in which = 6(x, y, 8) can be—1 or +1.
Next, we consider a set 8f numbersy;,i = 1,2,..., M, such that; = 0 and for every

i,e P Bx; > —1. Then

Iy et Y A+ehrpx)e”

- i o—Bi e P + R(x;)
H|XLers Ylieti R
2
< f: efn et [ YL Re) (XL Re)\
i=1 Z,Ail e pxi Zf‘il e hxi Zzﬂil e b Zzﬁil e
R(x;)

M
+ Z ,
i=1
We used the fact that, sinae = 0, we know thab_", e % > "™ R, as soon ag is large
enough. For the same reaspiy e > 1 and)_, (e + R(x;)) > % Hence, wherg is
large, the above expression is smaller than

S e P+ R(x;)

C max{3(Bx;))%e e +o(3e7 P (Bx;)%e )}

for some constant < oo, independentof;,i =1,2,... M, y, andg.

To prove the lemma we replace the index{get = 1, ..., M} by the set2q, the numbers
xi,i =1,2,..., M,, by the numbersU (n**) — U (1)), ¢ € Qo, for k fixed, andg by g, If
we takey > 3N Unax, We obtain an upper bound for

k . ~(k .
var(pg (0" |n), By ("' In)

which decreases faster than*", independently ofy andx. |
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